


















FIG 6 Crystal structure of PGT130 Fab highlights differing modes of binding by the antibody classes. (A) The crystal structure of the PGT130 Fab variable
region is represented as a gray ribbon. The CDR loops are individually labeled and colored, with small red circles indicating parts of the CDR H3 loop that
are disordered in the structure. The two N-linked glycosylation sites are also labeled and shown in green ball-and-stick representations. To the right, the
combining site of PGT130 Fab is displayed in more detail. Residues that are important for binding gp120, as determined by alanine-scanning mutagenesis,
are labeled, and their side chains are shown as ball-and-sticks. The side chain of TrpH100E is not shown because it is disordered in the crystal structure. (B)
The crystal structures of the PGT130 (gray ribbon) and PGT128 (thin blue ribbon) (PDB ID or accession no. 3TV3) variable regions are shown
superposed. CDR loops with significant differences between the structures are labeled. (C) The CDR loops of PGT128 are shown as individual ribbons at
its extended epitope on the SOSIP trimer extending across portions of the V3 loop (yellow surface) and the V1 loop (gray surface). The V1 component of
the epitope is modeled here based on superposing the PGT128-gp120 outer domain structure (PDB ID 3TYG) on the BG505 SOSIP trimer structure (PDB
ID 4NCO) only on gp120. Glycans are shown as colored spheres. Insertions/deletions on the CDR loops are colored red. (D) The glycan shift from position
N332 to N334 is modeled in relation to the PGT128 CDR H2 loop colored as in panel C. (E) Alanine-scanning mutagenesis of the PGT130 paratope.
Amino acids at positions known to be important for PGT128 neutralization were mutated to alanine in PGT130, and the effect on neutralization of JR-FL
and JR-CSF was determined. The fold increase in the neutralization IC50 compared to WT IgG is depicted in the table with different colors as follows:
green, 3- to 5-fold; yellow, 6- to 20-fold; orange, 21- to 100-fold; red, �100-fold. The residues mutated in PGT130 and PGT128 are shown in red and black
in the variant column, respectively. N/A, not applicable, as that particular residue not present at that position in the somatic variant; n.d., not determined.
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JR-FL pseudovirus (Fig. 6E) and on gp120 binding (see Fig. S7 in
the supplemental material) was measured. Residues shown to be
critical for PGT128 interaction with Man8/9GlcNAc2 at position
N332 (HCDR3 residues W100eA and K100gA and LCDR3 W95A
and D95aA) were also found to be critical for PGT130 neutraliza-
tion and gp120 binding, suggesting similar modes of recognition
for this high-mannose glycan. These residues are conserved be-
tween all family members and precursor antibodies indicating
that these mutations arose before divergence of the two branches
(Fig. S8). This may suggest that the interaction with the N332
glycan was important for initial selection of this bnAb family.
Residues H59 and K64 in PGT128 that also contact the N332
glycan are conserved in PGT130, but these residues had little effect
on neutralization when mutated in PGT128 (15). Residues within
the CDRH2 of PGT130 (Ile51 to Thr55) were also identified as
important for neutralization by PGT130. Based on the PGT130
Fab structure, His50 and Ile51 likely play a structural role in main-
taining the antibody-combining site, whereas Tyr53 and Thr54 are
more likely forming key contacts with the target epitope. Unlike
PGT128, PGT130 has N-linked glycans in the variable regions of
its heavy and light chains. When these glycans were removed using
site-directed mutagenesis, no significant effect on either neutral-
ization breadth or potency was observed (Fig. 6E), suggesting that
these glycans are not important for the difference in epitope rec-
ognition by the two classes of bnAbs.

DISCUSSION

Insight into the development of broadly neutralizing antibodies
(bnAbs) in HIV-infected individuals is a major goal in HIV vac-
cine research (39–43). bnAbs targeting the glycan shield must ei-
ther bind the N-linked glycans within their binding site for in-
creased affinity or evolve to accommodate or avoid obstructing
glycans. The bnAb response against the high-mannose patch in
IAVI protocol G donor 36 uses a combination of these strategies.
Unlike less-mutated forms of PGT121 that use additional
N-linked glycans for neutralization (17, 20), this family of bnAbs
evolves to better accommodate or avoid the V1 loop glycans (Fig.
4) while gaining affinity from binding to both the N332/N334/
N295 and N301 glycans. From the small number of putative germ
line precursor bnAbs tested in this study, it can be deduced that
increased SHM and indels in this family of bnAbs have several
effects: (i) an increased breadth and potency of neutralization
(Fig. 3C), (ii) an ability to better accommodate changes in glycan
heterogeneity within the antibody combining site (Fig. S5), (iii) an
ability to better accommodate glycans within the V1 loop for some
virus strains (Fig. 4), and (iv) an increased ability to utilize other
N-linked glycans within the high-mannose patch in the absence of
the N332 glycan (Fig. 3D). Here we describe two related classes of
bnAbs against the high-mannose patch arising from a single re-
combination event in donor 36 that achieve these advantageous
features differently. The most potent class, PGT128, has a critical
insertion in the CDRH2. The second more-mutated class,
PGT130, although less potent, is more able to tolerate different
glycan patterns in the high-mannose patch (Fig. 3) (18).

We first consider the PGT128 class of bnAbs. An important
difference between the PGT128 and PGT130 classes of bnAbs
from donor 36 is the CDRH2 insertion and CDRL1 deletion in the
PGT128 branch that appears to occur at a relatively early time
point (Fig. 1 and Table 1; see Fig. S1 in the supplemental material).
We have shown that a PGT128 variant lacking the CDRH2 insert

has very limited neutralization activity, but neutralization can be
increased by removal of certain V1 loop glycans. These data, along
with docking of PGT128 on the BG505 SOSIP trimer (17), suggest
that the PGT128 CDRH2 insertion is necessary to accommodate
V1 loop glycosylation (Fig. 6C and D). However, the tight associ-
ation between the CDRH2 loop insertion and the N332 glycan,
although increasing neutralization potency, appears to constrain
the PGT128 interaction toward the V3 loop, thus reducing the
ability of PGT128 to use alternate glycans in the vicinity of the
high-mannose patch in the absence of the N332 glycan compared
to PGT130 (Fig. 3) (18). SHM also plays an important role in
epitope recognition in the PGT128 bnAb class. Antibody 95H 71L,
which also has both the heavy-chain insertion and light-chain
deletion but a lower level of SHM, was found to be more sensitive
to changes in glycan heterogeneity and removal of V1 loop glyco-
sylation and had a reduced ability to neutralize N334 and N332A/
N334A mutant viruses.

The bnAbs in the PGT130 class have no indels; therefore, they
rely solely on SHM for neutralization breadth and potency and use
of alternate glycans in binding to the high-mannose patch. A com-
mon feature of many HIV bnAbs is the presence of long insertions
and deletions that appear critical for HIV reactivity (1, 20, 44–46),
and it is a challenge for immunogen design to develop strategies
capable of eliciting antibodies with these unusual features (47). As
demonstrated here, PGT130 is able to reach a level of neutraliza-
tion breadth similar to that of PGT128 without indels, albeit with
a slightly higher degree of somatic mutation and a slightly lower
potency. The decreased potency of PGT130 may reflect its reduced
ability to accommodate V1 loop glycosylation near the CDRL1
loop within the binding site and its greater sensitivity to changes in
glycan heterogeneity (Fig. 4 and 5; see Fig. S6 in the supplemental
material). However, the subsequent benefit of PGT130 lacking the
PGT128 indels is its noticeably increased ability to neutralize
N334-containing viruses. Here we show that the putative precur-
sor of PGT130, Ab 74H 3L, is able to neutralize 42% of N334
viruses compared to 5% of N332 viruses. This may suggest that the
PGT130 branch initially evolved to be predominantly N334 de-
pendent and upon increased SHM, it was able to bind more dif-
ferent configurations of the high-mannose patch and neutralize
N332-containing viruses. In support of this hypothesis, we also
identified an additional subbranch (9H 46L) that neutralized 50%
of N334 viruses (with a median IC50 of 0.08 �g/ml) compared to
only 12% of N332 viruses.

The findings described here have implications for vaccine de-
sign. This study and our previous work (18) suggest a spectrum of
N332 and N334 dependency exists for bnAbs that bind the high-
mannose patch. At one extreme, from a single donor, donor 36,
PGT127 shows strong dependence on N332 (3, 18), and at the
other extreme, 9H 46L shows strong dependence on N334 (Fig.
3B). PGT130 occupies the middle ground and neutralizes both
N332 and N334 viruses efficiently. A combination of bnAbs with
differing N332/N334 dependence will likely be most effective at
limiting viral escape and providing protection against all subtypes.
Without longitudinal samples, it is not possible to determine in
detail how the two antibody classes diverged. However, despite the
differences described above, the crystal structures of PGT128 and
PGT130 Fab are remarkably similar except for the PGT128 indels.
Paratope mapping (Fig. 6E) and sequence alignment (see Fig. S8
in the supplemental material) has shown conservation of residues
critical for N332/N334 binding across both bnAb classes and pre-
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dicted precursor nAbs suggesting that a common pathway of mat-
uration occurred before divergence and introduction of the
PGT128 indels. As shown by Moore et al., the differing N332/
N334 specificity may have arisen from the different selective pres-
sures on the virus from the two antibody branches within this
donor that drove the shift of the N332/N334 glycan site (5). There-
fore, in terms of immunogen design, both immunogens with a
glycan at position N332 and immunogens with a glycan at posi-
tion N334 may prove essential for eliciting a bnAb response sim-
ilar to that in donor 36.

Further, these findings suggest a series of immunogens that
first lack key V1 loop glycan sites (N137 or N149/N151), and then
inclusion of these glycan sites, might favor elicitation of bnAbs
that can better accommodate V1 loop glycosylation. The com-
plexity of the epitope of the donor 36 bnAbs, and similarly, other
high-mannose patch binding bnAbs (1, 16, 18, 20), indicates that
immunogens focused only on the key contacts with the mature
bnAbs will likely elicit bnAbs with limited neutralization breadth
and potency. Finally, the ability to accommodate the natural gly-
can heterogeneity of virion-associated envelope may prove essen-
tial for in vivo protection against 100% of virus particles. There-
fore, although some bnAbs have a higher binding affinity for
certain glycoforms, immunogens designed to reelicit this family of
bnAbs may need to incorporate glycan heterogeneity similar to
that on viral gp120 such that elicited bnAbs bind all possible en-
velope glycoforms and achieve 100% neutralization.

In summary, somatic hypermutation and indels in a family of
bnAbs to the high-mannose patch of HIV gp120 increases neu-
tralization breadth and potency through more complete recogni-
tion of glycan heterogeneity, accommodation of V1 loop glycans,
and the ability to utilize alternate glycans. The level of SHM re-
quired for HIV reactivity is higher than for donor 17 bnAbs (20).
Two classes of bnAbs within a single lineage directed to the high-
mannose patch exist in donor 36. The PGT128 class is superior in
neutralization breadth and potency; however, PGT130 would
likely be more effective at countering potential escape through
mutation of glycan sites. Therefore, a vaccine capable of eliciting
both classes of bnAbs would be highly advantageous (18). In terms
of immunogen design, a combination of immunogens displaying
either the N332 or N334 glycan sites, with carefully positioned V1
loop glycans and glycan heterogeneity which resembles that of the
virus may be needed to maximize the potential of eliciting anti-
bodies of this specificity and a high degree of neutralization
breadth and potency.
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